ELECTRONIC STATES AND LOCAL DENSITY OF STATES NEAR GRAPHENE CORNER EDGE
We study that stability of edge localized states in semi-infinite graphene with a corner edge of the angles 60°, 90°, 120° and 150°. We adopt a nearest-neighbor tight-binding model to calculate the local density of states (LDOS) near each corner edge using Haydock's recursion method. The results of the LDOS indicate that the edge localized states stably exist near the 60°, 90°, and 150° corner, but locally disappear near the 120° corner. By constructing wave functions for a graphene ribbon with three 120° corners, we show that the local disappearance of the LDOS is caused by destructive interference of edge states and evanescent waves.