World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXPERT SYSTEM APPROACH TO ASSESSMENTS OF BLEEDING PREDISPOSITIONS IN TONSILLECTOMY/ADENOIDECTOMY PATIENTS

    https://doi.org/10.1142/9789814439404_0005Cited by:9 (Source: Crossref)
    Abstract:

    The purpose of this expert system is to assess a predisposition to bleeding in a patient undergoing a tonsillectomy and/or adenoidectomy, as may occur with patients who have certain blood conditions such as hemophilia, von Willebrand's disease, and platelet function defects. This objective is achieved by establishing a correlation between the patients' responses to a medical questionnaire and the relative quantities of blood lost during their operations.

    Three major modules constitute the system: the automated questionnaire to be completed by the patient, the expert system proper, and the patient database. The questionnaire is divided into fourteen sections on topics such as the occurrence of bruises and positive familial history. The expert system takes the responses to the questionnaire and determines risk categories for patients undergoing the operations. The patient database contains the patients' questionnaire responses, personal data and the risk assessments generated by the expert system.

    Subsequent to the development of the expert system prototype, inductive learning techniques were examined to automatically classify patients as either normal or abnormal. Specifically, Quinlan's ID3 induction algorithm was used whereby a training set of patient data generates a classification tree whose leaf nodes correspond to the classification outcomes.

    This paper presents the architecture of the hematology expert system, identifies some problems encountered during the knowledge engineering process and presents some statistical data pertaining to the accuracy of its risk assessments. It also offers a comparative review of the expert system and inductive learning methodologies.