ANALYSIS OF THE STABILIZING EFFECT OF ROM ON THE GENETIC NETWORK CONTROLLING COLE1 PLASMID REPLICATION
A stochastic model of ColE1 plasmid replication is presented. It is implemented by using UltraSAN, a simulation tool based on an extension of stochastic Petri nets (SPNs). It allows an exploration of the variation in plasmid number per bacterium, which is not possible using a deterministic model. In particular, the rate at which plasmid-free bacteria arise during bacterial division is explored in some detail since spontaneous plasmid loss is a widely observed empirical phenomenon. The rate of spontaneous plasmid loss provides an evolutionary explanation for the maintainance of Rom protein. The presence of Rom acts to reduce variance in plasmid copy number, thereby reducing the rate of plasmid loss at bacterial division. The ability of stochastic models to link biochemical function with evolutionary considerations is discussed.