World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/9789814503655_0036Cited by:0 (Source: Crossref)
Abstract:

In the interest of providing more efficient computer-based analysis of DNA and protein sequences, Cray Research has developed a high performance implementation of the sequence alignment method of Needleman and Wunsch using the programming technique of pocket arithmetic. The basis for this implementation is the program SEQHDP, which finds locally homologous subsequences of a protein sequence pair and determines the statistical significance of the homology. Pocket arithmetic takes advantage of the 64-bit width of an operand on the Cray Y-MP by packing more than one integer value per word, then performing logical or integer operations on the packed word to yield multiple results per operation. This technique, in combination with the vector processing capabilities of the Cray Y-MP CPU, produces substantially improved performance over the conventionally coded version of the same algorithm. We will introduce the programming technique of pocket arithmetic, then describe its implementation in the Needleman-Wunsch sequence comparison function in SEQHDP. Performance results based on actual protein sequence comparisons are presented.