World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Exact Solution of a Many-Fermion System and Its Associated Boson Field

    https://doi.org/10.1142/9789814520720_0002Cited by:0 (Source: Crossref)
    Abstract:

    Luttinger's exactly soluble model of a one-dimensional many-fermion system is discussed. We show that he did not solve his model properly because of the paradoxical fact that the density operator commutators [ρ(p), ρ(–p′)], which always vanish for any finite number of particles, no longer vanish in the field-theoretic limit of a filled Dirac sea. In fact the operators ρ(p) define a boson field which is ipso facto associated with the Fermi–Dirac field. We then use this observation to solve the model, and obtain the exact (and now nontrivial) spectrum, free energy, and dielectric constant. This we also extend to more realistic interactions in an Appendix. We calculate the Fermi surface parameter ñk, and find: ∂ñk/∂k!kr = ∞ (i.e., there exists a sharp Fermi surface) only in the case of a sufficiently weak interaction.