World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

QUANTUM HALL EDGE PHYSICS AND ITS ONE-DIMENSIONAL LUTTINGER LIQUID DESCRIPTION

    This article first appeared in International Journal of Modern Physics B, Vol. 26, No. 22 (2012).

    https://doi.org/10.1142/9789814520720_0007Cited by:0 (Source: Crossref)
    Abstract:

    We describe the relationship between quantum Hall edge states and the one-dimensional Luttinger liquid model. The Luttinger liquid model originated from studies of one-dimensional Fermi systems, however, it results that many ideas inspired by such a model can find applications to phenomena occurring even in higher dimensions. Quantum Hall systems which essentially are correlated two-dimensional electronic systems in a strong perpendicular magnetic field have an edge. It turns out that the quantum Hall edge states can be described by a one-dimensional Luttinger model. In this work, we give a general background of the quantum Hall and Luttinger liquid physics and then point out the relationship between the quantum Hall edge states and its one-dimensional Luttinger liquid representation. Such a description is very useful given that the Luttinger liquid model has the property that it can be bosonized and solved. The fact that we can introduce a simpler model of noninteracting bosons, even if the quantum Hall edge states of electrons are interacting, allows one to calculate exactly various quantities of interest. One such quantity is the correlation function which, in the asymptotic limit, is predicted to have a power law form. The Luttinger liquid model also suggests that such a power law exponent should have a universal value. A large number of experiments have found the quantum Hall edge states to show behavior consistent with a Luttinger liquid description. However, while a power law dependence of the correlation function has been observed, the experimental values of the exponent appear not to be universal. This discrepancy might be due to various correlation effects between electrons that sometimes are not easy to incorporate within a standard Luttinger liquid model.