World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHAPTER 6: NONLINEAR DYNAMICS OF ATOM–MOLECULE CONVERSION

    https://doi.org/10.1142/9789814590174_0006Cited by:0 (Source: Crossref)
    Abstract:

    The creation of ultracold molecules has opened up new possibilities for studies on molecular matter waves, strongly interacting superfluids, high-precision molecular spectroscopy and coherent molecular optics. In an atomic Bose–Einstein condensate (BEC) and a degenerate Fermi–Fermi or Fermi–Bose mixture, magnetic Feshbach resonance or optical photoassociation (PA) technique has been used to create not only diatomic molecules but also more complex molecules. In this chapter, we focus on many issues of nonlinear dynamics of atom–molecule systems. In Sec. 1, on the basis of the two-channelmean-field approach, we study the manybody effects on the Landau–Zener(LZ) picture of two-body molecular production through dramatically distorting the energy levels near the Feshbach resonance. In Sec. 2, we investigate the Feshbach resonance with modulation of an oscillating magnetic field. In Sec. 3, we include the nonlinear interparticle collisions and focus on the linear instability induced by the collisions and the adiabatic fidelity of the atom–trimer dark state in a stimulated Raman adiabatic passage (STIRAP). In Sec. 4, we theoretically investigate conversion problem from atom to N-body polyatomic molecule in an ultracold bosonic system by implementing the generalized STIRAP. In the last section, we discuss role of two-body interactions in the Feshbach conversion of fermionic atoms to bosonic molecules.