World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Multiscale and Multidisciplinary Analysis of Deformation and Damage in the Case of Oligocrystalline Structures

    https://doi.org/10.1142/9789814651011_0017Cited by:1 (Source: Crossref)
    Abstract:

    This paper serves as an overview of the ongoing research in the field of multiscale and multidisciplinary analysis of deformation and damage in the case of oligocrystalline structures. The research focuses on experimental measurement and numerical calculation of ductile failure in the X2CrNiMo18-15-3 (AISI 316L) stainless steel. An embedding numerical technique is employed where crystal plasticity theory is used to represent plastic deformation in the material and element removal technique based on Rice&Tracey damage model for ductile void growth to simulate damage initiation inside the material, which is observed in the experiments. Additionally, the crystal plasticity model is supported by a hierarchical multiscale approach connecting nano-, micro- and meso-scales.