World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ADAPTIVE GAIT TRAJECTORY BASED ON ITERATIVE LEARNING CONTROL FOR LOWER EXTREMITY REHABILITATION EXOSKELETON

    This work is supported by National Science Foundation of China (No.51475314 and No.61203367).

    https://doi.org/10.1142/9789814725248_0009Cited by:1 (Source: Crossref)
    Abstract:

    The design of a controller is one of the key tasks and major difficulties in the development of rehabilitation exoskeletons. An algorithm about an adaptive gait trajectory based on the iterative learning control for lower extremity rehabilitation exoskeleton is proposed in this paper. First of all, dynamic model is built up based on the Lagrange equations for the lower extremity rehabilitation exoskeleton. Secondly, an adaptive gait trajectory based on the iterative learning controller is put forward to achieve the active mode of patients. Finally, a simulation experiment is conducted in MATLAB based on the standard gait data which were collected by an optical motion capture system. The simulation results show that the control algorithm can achieve the desired adaptive tracking for joint trajectory and enable patients' active participation in rehabilitation.