World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MAPPING REPETITIVE STRUCTURAL TUNNEL ENVIRONMENTS FOR A BIOLOGICALLY-INSPIRED CLIMBING ROBOT

    https://doi.org/10.1142/9789814725248_0041Cited by:3 (Source: Crossref)
    Abstract:

    This paper presents an approach to using noisy and incomplete depth-camera datasets to detect reliable surface features for use in map construction for a caterpillar-inspired climbing robot. The approach uses a combination of plane extraction, clustering and template matching techniques to infer from the restricted dataset a usable map. This approach has been tested in both laboratory and real-world steel bridge tunnel datasets generated by a climbing robot, with the results showing that the generated maps are accurate enough for use in localisation and step trajectory planning.