MAPPING REPETITIVE STRUCTURAL TUNNEL ENVIRONMENTS FOR A BIOLOGICALLY-INSPIRED CLIMBING ROBOT
This paper presents an approach to using noisy and incomplete depth-camera datasets to detect reliable surface features for use in map construction for a caterpillar-inspired climbing robot. The approach uses a combination of plane extraction, clustering and template matching techniques to infer from the restricted dataset a usable map. This approach has been tested in both laboratory and real-world steel bridge tunnel datasets generated by a climbing robot, with the results showing that the generated maps are accurate enough for use in localisation and step trajectory planning.