World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GUARANTEED MUTUALLY CONSISTENT CHECKPOINTING IN DISTRIBUTED COMPUTATIONS

    https://doi.org/10.1142/S0129054100000089Cited by:0 (Source: Crossref)

    In this paper, we explore the isomorphism between vector time and causality to characterize consistency of a set of checkpoints in a distributed computing. A necessary and sufficient condition, to determine if a set of local checkpoints can form a consistent global checkpoint, is presented and proved using the isomorphic power of vector time and causality. To the best of our knowledge, this is the first attempt to use the isomorphism for this purpose. This condition leads to a simple and straightforward algorithm for a guaranteed mutually consistent global checkpointing. In our approach, a process can take a checkpoint whenever and wherever it wants while other related process may be asked to take an additional checkpoint for ensuring the mutual consistency. We also show how this condition and the resulting algorithm can be used to obtain a maximum and minimum global checkpoints, another important paradigm for distributed applications.