World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE k-TRUCK SCHEDULING PROBLEM

    https://doi.org/10.1142/S0129054104002340Cited by:9 (Source: Crossref)

    In this paper, some results concerning the k-truck problem are produced. Firstly, the algorithms and their complexity concerning the off-line k-truck problem are discussed. Following that, a lower bound of competitive ratio (1+θ)·k/(θ·k+2) for the on-line k-truck problem is given, where θ is the ratio of cost of the loaded truck and the empty truck on the same distance, and a relevant lower bound for the on-line k-taxi problem followed naturally. Thirdly, based on the Position Maintaining Strategy (PMS), some new results which are slightly better than those of [11] for general cases are obtained. For example, a c-competitive or (c/θ+1/θ+1)-competitive algorithm for the on-line k-truck problem depending on the value of θ, where c is the competitive ratio of some algorithm to a relevant k-server problem, is developed. The Partial-Greedy Algorithm (PG) is used as well to solve this problem on a line with n nodes and is proved to be a (1+(n-k)/θ)-competitive algorithm for this case. Finally, the concepts of the on-line k-truck problem are extended to obtain a new variant: Deeper On-line k-Truck Problem (DTP). We claim that results of PMS for the STP (Standard Truck Problem) hold for the DTP.

    The authors would like to acknowledge the support of Central Research Grant GV-975 of the Hong Kong Polytechnic University and Research Grant from NSF of China. No.19731001.