World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

P SYSTEMS WITH REACTION MAPS

    https://doi.org/10.1142/S0129054106003681Cited by:36 (Source: Crossref)

    Some recent types of membrane systems have shown their potential in the modelling of specific processes governing biological cell behavior. These models represent the cell as a huge and complex dynamical system in which quantitative aspects, such as biochemical concentrations, must be related to the discrete informational nature of the DNA and to the function of the organelles living in the cytosol. In an effort to compute dynamical (especially oscillatory) phenomena—so far mostly treated using differential mathematical tools—by means of rewriting rules, we have enriched a known family of membrane systems (P systems), with rules that are applied proportionally to the values expressed by real functions called reaction maps. Such maps are designed to model the dynamic behavior of a biochemical phenomenon and their formalization is best worked out inside a family of P systems called PB systems. The overall rule activity is controlled by an algorithm that guarantees the system to evolve consistently with the available resources (i.e., objects). Though radically different, PB systems with reaction maps exhibit very interesting, often similar dynamic behavior as compared to systems of differential equations. Successful simulations of the Lotka-Volterra population dynamics, the Brusselator, and the Protein Kinase C activation foster potential applications of these systems in computational systems biology.

    AMSC: 68Q10, 68Q85, 92-08, 37N25