World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FURTHER RESULTS ON TIME-FREE P SYSTEMS

    https://doi.org/10.1142/S012905410600370XCited by:10 (Source: Crossref)

    Membrane systems (currently called P systems) are parallel computing devices inspired by the structure and the functioning of living cells. A standard feature of P systems is that each rule is executed in exactly one time unit. Actually, in living cells different chemical reactions might take different times to be executed; moreover, it might be hard to know precisely such time of execution. For this reason, in [7] two models of P systems (time-free and clock-free P systems) have been defined and investigated, where the time of execution of the rules is arbitrary and the output produced by the system is always the same, independently of this time. Preliminary results concerning time-free and clock-free P system have been obtained in [6, 7, 8]. In this paper we continue these investigations by considering different combinations of possible ingredients. In particular, we present the universality of time-free P systems using bi-stable catalysts. Then, we prove that this result implies that is not possible to decide whether an arbitrary bi-stable catalytic P system is time-free. We present several results about time-free evolution-communication P systems, where the computation is a mixed application of evolution and symport/antiport rules. In this case we obtain the universality even by using non-cooperative evolution rules and antiports of weight one. Finally, we formulate several open problems.

    AMSC: 68Q05, 68Q45, 68Q85, 02D25, 03D35