World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SPIKE TRAINS IN SPIKING NEURAL P SYSTEMS

    https://doi.org/10.1142/S0129054106004212Cited by:101 (Source: Crossref)

    We continue here the study of the recently introduced spiking neural P systems, which mimic the way that neurons communicate with each other by means of short electrical impulses, identical in shape (voltage), but emitted at precise moments of time. The sequence of moments when a neuron emits a spike is called the spike train (of this neuron); by designating one neuron as the output neuron of a spiking neural P system II, one obtains a spike train of II. Given a specific way of assigning sets of numbers to spike trains of II, we obtain sets of numbers computed by II. In this way, spiking neural P systems become number computing devices. We consider a number of ways to assign (code) sets of numbers to (by) spike trains, and prove then computational completeness: the computed sets of numbers are exactly Turing computable sets. When the number of spikes present in the system is bounded, a characterization of semilinear sets of numbers is obtained. A number of research problems is also formulated.

    AMSC: 68Q10, 68Q42, 68Q45