World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A KLEENE THEOREM FOR BISEMIGROUP AND BINOID LANGUAGES

    https://doi.org/10.1142/S012905411100812XCited by:0 (Source: Crossref)

    A bisemigroup is a set with two associative operations. Subsets of free bisemigroups are called bisemigroup languages. Recognizable, regular and MSO-definable bisemigroup languages have been studied earlier, and these classes are known to be equal. In this paper we prove a Kleene theorem for bisemigroup languages, namely we show that the class of recognizable bisemigroup languages is the least class which contains the finite languages and closed under the operations of union, horizontal and vertical product, horizontal and vertical iteration, ξ-substitution and a restricted version of the the ξ-iteration. We extend our result to binoid languages, i.e., to subsets of free algebras, where the two associative operations share a common identity element.