World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue — International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT 2009)No Access

BALANCED DENSE POLYNOMIAL MULTIPLICATION ON MULTI-CORES

    https://doi.org/10.1142/S0129054111008556Cited by:11 (Source: Crossref)

    In symbolic computation, polynomial multiplication is a fundamental operation akin to matrix multiplication in numerical computation. We present efficient implementation strategies for FFT-based dense polynomial multiplication targeting multi-cores. We show that balanced input data can maximize parallel speedup and minimize cache complexity for bivariate multiplication. However, unbalanced input data, which are common in symbolic computation, are challenging. We provide efficient techniques, that we call contraction and extension, to reduce multivariate (and univariate) multiplication to balanced bivariate multiplication. Our implementation in Cilk++ demonstrates good speedup on multi-cores.