World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LOWER BOUNDS ON THE SECOND ORDER NONLINEARITY OF BOOLEAN FUNCTIONS

    https://doi.org/10.1142/S012905411100874XCited by:7 (Source: Crossref)

    It is a difficult task to compute the r-th order nonlinearity of a given function with algebraic degree strictly greater than r > 1. Though lower bounds on the second order nonlinearity are known only for a few particular functions, the majority of which are cubic. We investigate lower bounds on the second order nonlinearity of cubic Boolean functions , where , dl = 2il + 2jl + 1, m, il and jl are positive integers, n > il > jl. Furthermore, for a class of Boolean functions we deduce a tighter lower bound on the second order nonlinearity of the functions, where , dl = 2ilγ + 2jlγ + 1, il > jl and γ ≠ 1 is a positive integer such that gcd(n,γ) = 1.

    Lower bounds on the second order nonlinearity of cubic monomial Boolean functions, represented by fμ(x) = Tr(μx2i+2j+1), , i and j are positive integers such that i > j, were obtained by Gode and Gangopadhvay in 2009. In this paper, we first extend the results of Gode and Gangopadhvay from monomial Boolean functions to Boolean functions with more trace terms. We further generalize and improve the results to a wider range of n. Our bounds are better than those of Gode and Gangopadhvay for monomial functions fμ(x). Especially, our lower bounds on the second order nonlinearity of some Boolean functions F(x) are better than the existing ones.