World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue Implementation and Application of Automata (CIAA 2010)No Access

A DUAL COORDINATE DESCENT ALGORITHM FOR SVMs COMBINED WITH RATIONAL KERNELS

    https://doi.org/10.1142/S0129054111009021Cited by:1 (Source: Crossref)

    This paper presents a novel application of automata algorithms to machine learning. It introduces the first optimization solution for support vector machines used with sequence kernels that is purely based on weighted automata and transducer algorithms, without requiring any specific solver. The algorithms presented apply to a family of kernels covering all those commonly used in text and speech processing or computational biology. We show that these algorithms have significantly better computational complexity than previous ones and report the results of large-scale experiments demonstrating a dramatic reduction of the training time, typically by several orders of magnitude.