World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

VERTEX ISOPERIMETRIC PARAMETER OF A COMPUTATION GRAPH

    https://doi.org/10.1142/S0129054112500128Cited by:5 (Source: Crossref)

    Let G = (V,E) be a computation graph, which is a directed graph representing a straight line computation and S ⊂ V. We say a vertex v is an input vertex for S if there is an edge (v, u) such that v ∉ S and u ∈ S. We say a vertex u is an output vertex for S if there is an edge (u, v) such that u ∈ S and v ∉ S. A vertex is called a boundary vertex for a set S if it is either an input vertex or an output vertex for S. We consider the problem of determining the minimum value of boundary size of S over all sets of size M in an infinite directed grid. This problem is related to the vertex isoperimetric parameter of a graph, and is motivated by the need for deriving a lower bound for memory traffic for a computation graph representing a financial application. We first extend the notion of vertex isoperimetric parameter for undirected graphs to computation graphs, and then provide a complete solution for this problem for all M. In particular, we show that a set S of size M = 3k2 + 3k + 1 vertices of an infinite directed grid, the boundary size must be at least 6k + 3, and this is obtained when the vertices in S are arranged in a regular hexagonal shape with side k + 1.