World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue – Developments in Language Theory (DLT 2014)No Access

Semisimple Synchronizing Automata and the Wedderburn-Artin Theory

    https://doi.org/10.1142/S0129054116400037Cited by:6 (Source: Crossref)

    We present a ring theoretic approach to Černý's conjecture via the Wedderburn-Artin theory. We first introduce the radical ideal of a synchronizing automaton, and then the natural notion of semisimple synchronizing automata. This is a rather broad class since it contains simple synchronizing automata like those in Černý's series. Semisimplicity gives also the advantage of “factorizing” the problem of finding a synchronizing word into the sub-problems of finding “short” words that are zeros into the projection of the simple components in the Wedderburn-Artin decomposition. In the general case this last problem is related to the search of radical words of length at most (n1)2 where n is the number of states of the automaton. We show that the solution of this “Radical Conjecture” would give an upper bound 2(n1)2 for the shortest reset word in a strongly connected synchronizing automaton. Finally, we use this approach to prove the Radical Conjecture in some particular cases and Černý's conjecture for the class of strongly semisimple synchronizing automata. These are automata whose sets of synchronizing words are cyclic ideals, or equivalently, ideal regular languages that are closed under taking roots.

    Communicated by Arseny Shur