World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CONTINUITY PROPERTIES OF SCHRÖDINGER SEMIGROUPS WITH MAGNETIC FIELDS

    https://doi.org/10.1142/S0129055X00000083Cited by:49 (Source: Crossref)

    The objects of the present study are one-parameter semigroups generated by Schrödinger operators with fairly general electromagnetic potentials. More precisely, we allow scalar potentials from the Kato class and impose on the vector potentials only local Kato-like conditions. The configuration space is supposed to be an arbitrary open subset of multi-dimensional Euclidean space; in case that it is a proper subset, the Schrödinger operator is rendered symmetric by imposing Dirichlet boundary conditions. We discuss the continuity of the image functions of the semigroup and show local-norm-continuity of the semigroup in the potentials. Finally, we prove that the semigroup has a continuous integral kernel given by a Brownian-bridge expectation. Altogether, the article is meant to extend some of the results in B. Simon's landmark paper [Bull. Amer. Math. Soc.7 (1982) 447] to non-zero vector potentials and more general configuration spaces.

    Mathematical Physics Preprint Archive: math-ph/9808004