Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NEW TYPES OF INTERACTIONS BASED ON VARIABLE SEPARATION SOLUTIONS VIA THE GENERAL PROJECTIVE RICCATI EQUATION METHOD

    https://doi.org/10.1142/S0129055X07002948Cited by:27 (Source: Crossref)

    In this paper, first, the general projective Riccati equation method (PREM) is applied to derive variable separation solutions of (2 + 1)-dimensional systems. By further studying, we find that these variable separation solutions obtained by PREM, which seem independent, actually depend on each other. A common formula with some arbitrary functions is obtained to describe suitable physical quantities for some (2 + 1)-dimensional models such as the generalized Nizhnik–Novikov–Veselov system, Broer–Kaup–Kupershmidt equation, dispersive long wave system, Boiti–Leon–Pempinelli model, generalized Burgers model, generalized Ablowitz–Kaup–Newell–Segur system and Maccari equation. The universal formula in Tang, Lou, and Zhang [2] can be simplified to the common formula in the present paper. Second, this method is successfully generalized to (1 + 1)-dimensional systems, such as coupled integrable dispersionless equations, shallow water wave equation, Boiti system and negative KdV model, and is able to obtain another common formula to describe suitable physical fields or potentials of these (1 + 1)-dimensional models, which is similar to the one in (2 + 1)-dimensional systems. Finally, based on the common formula for (2 + 1)-dimensional systems and by selecting appropriate multivalued functions, elastic and inelastic interactions among special dromion, special peakon, foldon and semi-foldon are investigated. Furthermore, the explicit phase shifts for all the local excitations offered by the common formula have been given, and are applied to these novel interactions in detail.

    AMSC: 35Q51, 35Q58