World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Brownian motion and finite approximations of quantum systems over local fields

    https://doi.org/10.1142/S0129055X17500167Cited by:7 (Source: Crossref)

    We give a stochastic proof of the finite approximability of a class of Schrödinger operators over a local field, thereby completing a program of establishing in a non-Archimedean setting corresponding results and methods from the Archimedean (real) setting. A key ingredient of our proof is to show that Brownian motion over a local field can be obtained as a limit of random walks over finite grids. Also, we prove a Feynman–Kac formula for the finite systems, and show that the propagator at the finite level converges to the propagator at the infinite level.

    AMSC: 81Q65, 60B10, 47G30, 41A99