World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A note on boundary conditions in Euclidean gravity

    https://doi.org/10.1142/S0129055X21400043Cited by:50 (Source: Crossref)

    We review what is known about boundary conditions in General Relativity on a spacetime of Euclidean signature. The obvious Dirichlet boundary condition, in which one specifies the boundary geometry, is actually not elliptic and in general does not lead to a well-defined perturbation theory. It is better-behaved if the extrinsic curvature of the boundary is suitably constrained, for instance if it is positive- or negative-definite. A different boundary condition, in which one specifies the conformal geometry of the boundary and the trace of the extrinsic curvature, is elliptic and always leads formally to a satisfactory perturbation theory. These facts might have interesting implications for semiclassical approaches to quantum gravity. April, 2018

    This paper is reproduced from the book Roman Jackiw: 80th Birthday Festschrift, edited by Antti Niemi, Terry Tomboulis and Kok Khoo Phua (World Scientific, 2020); https://doi.org/10.1142/9789811210679_0025