World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0129055X2450003XCited by:1 (Source: Crossref)

Two singularity theorems can be proven if one attempts to let a Lorentzian cobordism interpolate between two topologically distinct manifolds. On the other hand, Cartier and DeWitt-Morette have given a rigorous definition for quantum field theories (QFTs) by means of path integrals. This paper uses their results to study whether QFTs can be made compatible with topology changes. We show that path integrals over metrics need a finite norm for the latter and for degenerate metrics, this problem can sometimes be resolved with tetrads. We prove that already in the neighborhood of some cuspidal singularities, difficulties can arise to define certain QFTs. On the other hand, we show that simple QFTs can be defined around conical singularities that result from a topology change in a simple setup. We argue that the ground state of many theories of quantum gravity will imply a small cosmological constant and, during the expansion of the universe, will cause frequent topology changes. Unfortunately, it is difficult to describe the transition amplitudes consistently due to the aforementioned problems. We argue that one needs to describe QFTs by stochastic differential equations, and in the case of gravity, by Regge calculus in order to resolve this problem.

AMSC: 28C05, 83C47, 83C75