World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A REPAIR ALGORITHM FOR RADIAL BASIS FUNCTION NEURAL NETWORK AND ITS APPLICATION TO CHEMICAL OXYGEN DEMAND MODELING

    https://doi.org/10.1142/S0129065710002243Cited by:29 (Source: Crossref)

    This paper presents a repair algorithm for the design of a Radial Basis Function (RBF) neural network. The proposed repair RBF (RRBF) algorithm starts from a single prototype randomly initialized in the feature space. The algorithm has two main phases: an architecture learning phase and a parameter adjustment phase. The architecture learning phase uses a repair strategy based on a sensitivity analysis (SA) of the network's output to judge when and where hidden nodes should be added to the network. New nodes are added to repair the architecture when the prototype does not meet the requirements. The parameter adjustment phase uses an adjustment strategy where the capabilities of the network are improved by modifying all the weights. The algorithm is applied to two application areas: approximating a non-linear function, and modeling the key parameter, chemical oxygen demand (COD) used in the waste water treatment process. The results of simulation show that the algorithm provides an efficient solution to both problems.