AUTOMATED NONLINEAR SYSTEM MODELING WITH MULTIPLE FUZZY NEURAL NETWORKS AND KERNEL SMOOTHING
Abstract
This paper, presents a novel identification approach using fuzzy neural networks. It focuses on structure and parameters uncertainties which have been widely explored in the literatures. The main contribution of this paper is that an integrated analytic framework is proposed for automated structure selection and parameter identification. A kernel smoothing technique is used to generate a model structure automatically in a fixed time interval. To cope with structural change, a hysteresis strategy is proposed to guarantee finite times switching and desired performance.