Changes of Ionic Concentrations During Seizure Transitions — A Modeling Study
Abstract
Traditionally, it is considered that neuronal synchronization in epilepsy is caused by a chain reaction of synaptic excitation. However, it has been shown that synchronous epileptiform activity may also arise without synaptic transmission. In order to investigate the respective roles of synaptic interactions and nonsynaptic mechanisms in seizure transitions, we developed a computational model of hippocampal cells, involving the extracellular space, realistic dynamics of Na+Na+, K+K+, Ca2+Ca2+ and Cl−Cl− ions, glial uptake and extracellular diffusion mechanisms. We show that the network behavior with fixed ionic concentrations may be quite different from the neurons’ behavior when more detailed modeling of ionic dynamics is included. In particular, we show that in the extended model strong discharge of inhibitory interneurons may result in long lasting accumulation of extracellular K+K+, which sustains the depolarization of the principal cells and causes their pathological discharges. This effect is not present in a reduced, purely synaptic network. These results point to the importance of nonsynaptic mechanisms in the transition to seizure.