Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Automated Detection of Interictal Epileptiform Discharges from Scalp Electroencephalograms by Convolutional Neural Networks

    https://doi.org/10.1142/S0129065720500306Cited by:62 (Source: Crossref)

    Visual evaluation of electroencephalogram (EEG) for Interictal Epileptiform Discharges (IEDs) as distinctive biomarkers of epilepsy has various limitations, including time-consuming reviews, steep learning curves, interobserver variability, and the need for specialized experts. The development of an automated IED detector is necessary to provide a faster and reliable diagnosis of epilepsy. In this paper, we propose an automated IED detector based on Convolutional Neural Networks (CNNs). We have evaluated the proposed IED detector on a sizable database of 554 scalp EEG recordings (84 epileptic patients and 461 nonepileptic subjects) recorded at Massachusetts General Hospital (MGH), Boston. The proposed CNN IED detector has achieved superior performance in comparison with conventional methods with a mean cross-validation area under the precision–recall curve (AUPRC) of 0.838±0.040 and false detection rate of 0.2±0.11 per minute for a sensitivity of 80%. We demonstrated the proposed system to be noninferior to 30 neurologists on a dataset from the Medical University of South Carolina (MUSC). Further, we clinically validated the system at National University Hospital (NUH), Singapore, with an agreement accuracy of 81.41% with a clinical expert. Moreover, the proposed system can be applied to EEG recordings with any arbitrary number of channels.