World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Riemann zeta zeros and zero-point energy

    https://doi.org/10.1142/S0217751X14500511Cited by:4 (Source: Crossref)

    The sequence of nontrivial zeros of the Riemann zeta function is zeta regularizable. Therefore, systems with countably infinite number of degrees of freedom described by self-adjoint operators whose spectra is given by this sequence admit a functional integral formulation. We discuss the consequences of the existence of such self-adjoint operators in field theory framework. We assume that they act on a massive scalar field coupled to a background field in a (d+1)-dimensional flat space–time where the scalar field is confined to the interval [0, a] in one of its dimensions and there are no restrictions in the other dimensions. The renormalized zero-point energy of this system is presented using techniques of dimensional and analytic regularization. In even-dimensional space–time, the series that defines the regularized vacuum energy is finite. For the odd-dimensional case, to obtain a finite vacuum energy per unit area, we are forced to introduce mass counterterms. A Riemann mass appears, which is the correction to the mass of the field generated by the nontrivial zeros of the Riemann zeta function.

    PACS: 02.10.De, 05.30.Jp, 11.10.Gh
    You currently do not have access to the full text article.

    Recommend the journal to your library today!