World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Continuous Learning Approach for Real-Time Network Intrusion Detection

    https://doi.org/10.1142/S012906572150060XCited by:4 (Source: Crossref)

    Network intrusion detection is becoming a challenging task with cyberattacks that are becoming more and more sophisticated. Failing the prevention or detection of such intrusions might have serious consequences. Machine learning approaches try to recognize network connection patterns to classify unseen and known intrusions but also require periodic re-training to keep the performances at a high level. In this paper, a novel continuous learning intrusion detection system, called Soft-Forgetting Self-Organizing Incremental Neural Network (SF-SOINN), is introduced. SF-SOINN, besides providing continuous learning capabilities, is able to perform fast classification, is robust to noise, and it obtains good performances with respect to the existing approaches. The main characteristic of SF-SOINN is the ability to remove nodes from the neural network based on their utility estimate. SF-SOINN has been validated on the well-known NSL-KDD and CIC-IDS-2017 intrusion detection datasets as well as on some artificial data to show the classification capability on more general tasks.