World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Proceedings of the 28th Symposium on PIXE in Japan (The 19th Annual Meeting of the Japan Society for Particle Induced X-ray Emission (PIXE) Research)No Access

Quantitative analysis with a two-detector measuring system in in-air PIXE-design to improve detection sensitivity at low energies

    https://doi.org/10.1142/S012908351340007XCited by:5 (Source: Crossref)

    In this paper, a two-detector measuring system in in-air PIXE system composed of two Si(Li) detectors has been developed for simultaneous measurement of low- and high-Z elements. In order to improve detection sensitivity of the detector for low energy region, a new device which is attached at the tip of the detector has been designed. It is made of acryl and has a thin end on which a 1.5 μm-thick Mylar film is stuck. As a result, it exhibited a miraculous effect in improving detection sensitivity at low energies and it became possible to detect K X-rays of aluminium. In order to perform quantitative analysis in in-air system, we have measured detection efficiencies for the two Si(Li) detectors including the effect of X-ray absorption in air on the basis of the method that we developed. Concerning the beam energy at the target and corresponding X-ray production cross-sections, the same values as were reported in the previous paper were applicable since conditions of irradiating system were unchanged. It was confirmed that the new method allows us to quantitatively analyze all the elements heavier than aluminum and to obtain mostly the same results as those by in-vacuum PIXE for various kinds of samples. Accuracy of analysis was also confirmed by using a standard material.