World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EFFECT OF Si ON MICROSTRUCTURE AND FRACTURE TOUGHNESS OF DIRECTIONALLY SOLIDIFIED Nb SILICIDE ALLOYS

    https://doi.org/10.1142/S0217979210065933Cited by:10 (Source: Crossref)

    Nb-xSi(x=3,9,16)-22Ti-3Cr-3Al-2Hf (at.%) have been successfully prepared by directional solidification in an optical floating zone furnace. Microstructure analysis and phases identification of the alloys were examined by X-ray diffraction (XRD), Electro Probe Micro Analyzer (EPMA) and Energy Disperse Spectroscopy (EDS). Fracture toughness specimens without pre-crack were prepared, room temperature fracture toughness of alloys was tested by three-point bending method, and fracture mechanism was studied. The results showed that with increasing Si content, Nb5Si3 phase gradually increased and the phase transformed from γ-Nb5Si3 to the stable α-Nb5Si3 phase and β-Nb5Si3 phase. There appeared the Ti-rich Nb5Si3 phase when the Si content is 16 at%. In addition, more micro-cracks generated in the Ti-rich Nb5Si3 phase, which seriously affected room temperature fracture toughness of the alloys.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!