APPLICATIONS OF QUANTUM DOTS IN SEMICONDUCTOR LASERS
Abstract
Quantum Dots (QD) provide unique opportunities to extend all the basic properties of heterostructure lasers and move further their applications. Practical fabrication of QD lasers became possible when techniques for self-organized growth allowed fabrication of dense and uniform arrays of narrow-gap nanodomains, coherently inserted in a semiconductor crystal matrix. Using of InAs QD lasers enabled significant improvement of device performance and extension of the spectral range on GaAs substrates to mainstream telecom wavelengths. Continuous wave 1.3 μm room-temperature output power of ~300 mW single mode for edge-emitters and of 1.2 mW multimode for vertical-cavity surface-emitting lasers are realized. Long operation lifetimes are manifested. The breakthrough become possible both due to development of self-organized growth and defect-reduction techniques in QD technology.
Remember to check out the Most Cited Articles! |
---|
Check out these Notable Titles in Antennas |