World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Chapter 4. Optoelectronics and Advanced Lasers, Detectors and ImagersNo Access

PROPOSAL OF NOVEL STRUCTURE LIGHT EMITTING DEVICES CONSISTING OF InN/GaN MQWs WITH ULTRATHIN InN WELLS IN GaN MATRIX

    https://doi.org/10.1142/S0129156408005941Cited by:2 (Source: Crossref)

    Novel structure light emitting diodes (LEDs) made of InN/GaN multiple quantum wells (MQWs) are proposed and demonstrated. The MQWs consisted of very fine and narrow 1 monolayer (ML)-thick InN wells embedded in GaN matrix, which were successfully fabricated by radio-frequency molecular beam epitaxy. The thickness of InN wells can be fractional ML and/or two MLs depending on the growth conditions, resulting in different wavelength light emissions from deep violet to blue. Epitaxy processes for the MQWs fabrication are very unique on the basis of the self-ordering and coherent growth mode for atomically flat ~1 ML InN well deposition on GaN template. It is shown that the epitaxy temperature for 1 ML InN wells can be much higher than the highest epitaxy temperature of thick InN layer due to the effects of GaN matrix. Bright electroluminescence (EL) emission is observed at 418 nm at room temperature in LEDs fabricated by the MQWs. Further it is confirmed that the quantum confined Stark effect (QCSE) in InN wells is remarkably reduced due to the effects with using ultimately thin InN wells as active layers, resulting an extremely small blue shift in the EL peak wavelengths for two orders different injection current levels.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas