World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ELECTRONIC STRUCTURE OF GRAPHENE NANORIBBONS SUBJECTED TO TWIST AND NONUNIFORM STRAIN

    https://doi.org/10.1142/S0129156411006489Cited by:2 (Source: Crossref)

    Graphene nanoribbons exhibit band gap modulation when subjected to strain. While band gap creation has been theoretically investigated for uniaxial strains, other deformations such as nanoribbon twist have not been considered. Our main objective in this paper is to explore band gap opening in twisted graphene nanoribbons that have metallic properties under tight-binding approximation. While simple considerations based on the Hückel model allow to conclude that zigzag graphene nanoribbons exhibit no band gap when subjected to twist, the Hückel model overall may be inaccurate for band gap prediction in metallic nanoribbons. We utilize Density Functional Theory Tight-Binding Approximation together with a requirement that energy of twisted nanoribbons is minimized to evaluate band gap of metalic armchair nanoribbons. Besides considering twisting deformations, we also explore the possibility of creating band gap when graphene nanoribbons are subject to inhomogeneous deformation such as sinusoidal deformations.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas