World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on 3rd Russia–Japan–USA Symposium on Fundamental & Applied Problems of Terahertz Devices and Technologies (RJUS TeraTech-2014), June 17–21, New York, USA; Edited by Michael ShurNo Access

Characterization of High Mobility InAs/InGaAs/InAlAs Composite Channels by THz Magneto-Photoresponse Spectroscopy

    https://doi.org/10.1142/S0129156415200049Cited by:0 (Source: Crossref)

    Inserted narrow InAs quantum wells in InAs/InGaAs/InAlAs heterostructures have been used to achieve higher mobility for high-electron-mobility transistors (HEMTs) with ultra-low-power and low-noise amplification characteristics and for spin-based devices. Due to the large nonparabolicity of the conduction band of InAs and the penetration of the confined electronic envelope function into the adjacent layer(s), accurate calculations of effective mass and g-factor of charge carriers can be problematic. Methods of making precise determinations of the mass and other electronic parameters are thus of interest. We have applied magneto-photoresponse and -transmissions measurements at several THz laser frequencies in concert with dc magnetotransport measurements at low temperature (T = 1.6 K) to determine various electronic parameters (effective mass, carrier density, g-factor, mobility and the quantum scattering time) of the 2DEG in an InAs/In0.75Ga0.25As/In0.75Al0.25As inserted channel structure. This characterization method can also be used to probe the effect of strain, Rashba field, etc on the properties of charge carriers in such structures.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas