World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An In-Memory-Computing Structure with Quantum-Dot Transistor Toward Neural Network Applications: From Analog Circuits to Memory Arrays

    https://doi.org/10.1142/S0129156424400597Cited by:1 (Source: Crossref)
    This article is part of the issue:

    The rapid advancements in artificial intelligence (AI) have demonstrated great success in various applications, such as cloud computing, deep learning, and neural networks, among others. However, the majority of these applications rely on fast computation and large storage, which poses significant challenges to the hardware platform. Thus, there is a growing interest in exploring new computation architectures to address these challenges. Compute-in-memory (CIM) has emerged as a promising solution to overcome the challenges posed by traditional computer architecture in terms of data transfer frequency and energy consumption. Non-volatile memory, such as Quantum-dot transistors, has been widely used in CIM to provide high-speed processing, low power consumption, and large storage capacity. Matrix-vector multiplication (MVM) or dot product operation is a primary computational kernel in neural networks. CIM offers an effective way to optimize the performance of the dot product operation by performing it through an intertwining of processing and memory elements. In this paper, we present a novel design and analysis of a Quantum-dot transistor (QDT) based CIM that offers efficient MVM or dot product operation by performing computations inside the memory array itself. Our proposed approach offers energy-efficient and high-speed data processing capabilities that are critical for implementing AI applications on resource-limited platforms such as portable devices.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas