World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COCYCLES FOR CANTOR MINIMAL ℤd-SYSTEMS

    https://doi.org/10.1142/S0129167X09005686Cited by:4 (Source: Crossref)

    We consider a minimal, free action, φ, of the group ℤd on the Cantor set X, for d ≥ 1. We introduce the notion of small positive cocycles for such an action. We show that the existence of such cocycles allows the construction of finite Kakutani–Rohlin approximations to the action. In the case, d = 1, small positive cocycles always exist and the approximations provide the basis for the Bratteli–Vershik model for a minimal homeomorphism of X. Finally, we consider two classes of examples when d = 2 and show that such cocycles exist in both.

    AMSC: 37A20, 37B10