World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE SINGULARITIES OF THE ZETA AND ETA FUNCTIONS OF AN ELLIPTIC OPERATOR

    https://doi.org/10.1142/S0129167X11007616Cited by:1 (Source: Crossref)

    Let P be a self-adjoint elliptic operator of order m > 0 acting on the sections of a Hermitian vector bundle over a compact Riemannian manifold of dimension n. General arguments show that its zeta and eta functions may have poles only at points of the form , where k ranges over all nonzero integers ≤ n. In this paper, we construct elementary and explicit examples of perturbations of P which make the zeta and eta functions become singular at all points at which they are allowed to have singularities. We proceed within three classes of operators: Dirac-type operators, self-adjoint first-order differential operators and self-adjoint elliptic pseudodifferential operators. As consequences, we obtain genericity results for the singularities of the zeta and eta functions in those settings. In particular, in the setting of Dirac-type operators we obtain a purely analytical proof of a well-known result of Branson–Gilkey [Residues of the eta function for an operator of Dirac type, J. Funct. Anal. 108(1) (1992) 47–87], which was obtained by invoking Riemannian invariant theory. As it turns out, the results of this paper contradict Theorem 6.3 of [R. Ponge, Spectral asymmetry, zeta functions and the noncommutative residue, Int. J. Math. 17 (2006) 1065–1090]. Corrections to that statement are given in this paper.

    AMSC: Primary 58J50, Primary 58J42, Secondary 58J40