BOUNDEDNESS OF SEVERAL INTEGRAL OPERATORS WITH BOUNDED VARIABLE KERNELS ON HARDY AND WEAK HARDY SPACES
Abstract
In this paper, by using the atomic decomposition theory of Hardy space H1(ℝn) and weak Hardy space WH1(ℝn), we give the boundedness properties of some operators with variable kernels such as singular integral operators, fractional integrals and parametric Marcinkiewicz integrals on these spaces, under certain logarithmic type Lipschitz conditions assumed on the variable kernel Ω(x, z).