World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Welschinger invariants of real del Pezzo surfaces of degree ≥ 2

https://doi.org/10.1142/S0129167X15500603Cited by:12 (Source: Crossref)

We compute the purely real Welschinger invariants, both original and modified, for all real del Pezzo surfaces of degree ≥ 2. We show that under some conditions, for such a surface X and a real nef and big divisor class D ∈ Pic(X), through any generic collection of - DKX - 1 real points lying on a connected component of the real part ℝX of X one can trace a real rational curve C ∈ |D|. This is derived from the positivity of appropriate Welschinger invariants. We furthermore show that these invariants are asymptotically equivalent, in the logarithmic scale, to the corresponding genus zero Gromov–Witten invariants. Our approach consists in a conversion of Shoval–Shustin recursive formulas counting complex curves on the plane blown up at seven points and of Vakil's extension of the Abramovich–Bertram formula for Gromov–Witten invariants into formulas computing real enumerative invariants.

AMSC: 14N10, 14P05, 14N35