Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Upper bounds for geodesic periods over hyperbolic manifolds

    https://doi.org/10.1142/S0129167X1850009XCited by:1 (Source: Crossref)

    We prove an upper bound for geodesic periods of Maass forms over hyperbolic manifolds. By definition, such periods are integrals of Maass forms restricted to a special geodesic cycle of the ambient manifold, against a Maass form on the cycle. Under certain restrictions, the bound will be uniform.

    AMSC: 22E43, 11F03, 11F70