World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHAOTIC BEHAVIOR AND CHAOS CONTROL FOR A CLASS OF COMPLEX PARTIAL DIFFERENTIAL EQUATIONS

    https://doi.org/10.1142/S0129183101002073Cited by:15 (Source: Crossref)

    Systems of complex partial differential equations, which include the famous nonlinear Schrödinger, complex Ginzburg–Landau and Nagumo equations, as examples, are important from a practical point of view. These equations appear in many important fields of physics. The goal of this paper is to concentrate on this class of complex partial differential equations and study the fixed points and their stability analytically, the chaotic behavior and chaos control of their unstable periodic solutions. The presence of chaotic behavior in this class is verified by the existence of positive maximal Lyapunov exponent.The problem of chaos control is treated by applying the method of Pyragas. Some conditions on the parameters of the systems are obtained analytically under which the fixed points are stable (or unstable).

    You currently do not have access to the full text article.

    Recommend the journal to your library today!