World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SIMULATION OF UNSTEADY INCOMPRESSIBLE FLOWS BY USING TAYLOR SERIES EXPANSION- AND LEAST SQUARE-BASED LATTICE BOLTZMANN METHOD

    https://doi.org/10.1142/S012918310200353XCited by:17 (Source: Crossref)

    In this work, an explicit Taylor series expansion- and least square-based lattice Boltzmann method (LBM) is used to simulate two-dimensional unsteady incompressible viscous flows. The new method is based on the standard LBM with introduction of the Taylor series expansion and the least squares approach. The final equation is an explicit form and essentially has no limitation on mesh structure and lattice model. Since the Taylor series expansion is only applied in the spatial direction, the time accuracy of the new method is kept the same as the standard LBM, which seems to benefit for unsteady flow simulation. To validate the new method, two test problems, that is, the vortex shedding behind a circular cylinder at low Reynolds numbers and the oscillating flow in a lid driven cavity, were considered in this work. Numerical results obtained by the new method agree very well with available data in the literature.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!