World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

3D PULSATILE FLOW WITH THE LATTICE BOLTZMANN BGK METHOD

    https://doi.org/10.1142/S0129183102003826Cited by:44 (Source: Crossref)

    We present detailed analysis of the accuracy of the lattice Boltzmann BGK method in simulating pulsatile flow in a 2D channel and a 3D tube. For the 2D oscillatory flow, we have observed a half time-steps shift between the theory and the simulation, that enhances the accuracy at least one order of magnitude. For 3D tube flow, we have tested the accuracy of the lattice Boltzmann BGK method in recovering the Womersley solution for pulsatile flow in a rigid tube with a sinusoidal pressure gradient. The obtained flow parameters have been compared to the analytical solutions. The influence of different boundary conditions such as the bounce-back and inlet-outlet boundary conditions on the accuracy was studied. Relative errors of the order of 0.001 in 2D with the bounce back on the nodes have been achieved. For the 3D simulations, it has been possible to reduce the error from 15% with the simple bounce-back to less than 5% with a curved boundary condition.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!