World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE STUDY OF QUENCHED BOND RANDOMNESS BY WANG–LANDAU ALGORITHM

    https://doi.org/10.1142/S0129183107011169Cited by:0 (Source: Crossref)

    Monte Carlo simulations using the recently proposed Wang–Landau algorithm are performed to the q = 8 state Potts model in two dimension with various degrees of randomness. We systematically studied the effect of quenched bond randomness to system which has first-order phase transition. All simulations and measurements were done from pure case r = 1 to r = 0.4. Physical quantities such as energy density and ground-state entropy were evaluated at all temperatures. We have also obtained probability distributions of energy to monitor softening of transitions. It appears quite feasible to simulate spin systems with quenched bond randomness by Wang–Landau algorithm.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!