World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHAOS AND FRACTALS IN C–K MAP

    https://doi.org/10.1142/S0129183108012935Cited by:10 (Source: Crossref)

    The characteristic of the fixed points of the Carotid–Kundalini (C–K) map is investigated and the boundary equation of the first bifurcation of the C–K map in the parameter plane is given. Based on the studies of the phase graph, the power spectrum, the correlation dimension and the Lyapunov exponents, the paper reveals the general features of the C–K map transforming from regularity. Meanwhile, using the periodic scanning technology proposed by Welstead and Cromer, a series of Mandelbrot–Julia (M–J) sets of the complex C–K map are constructed. The symmetry of M–J set and the topological inflexibility of distributing of periodic region in the Mandelbrot set are investigated. By founding the whole portray of Julia sets based on Mandelbrot set qualitatively, we find out that Mandelbrot sets contain abundant information of structure of Julia sets.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!