World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PRECISE DETERMINATION OF BACKBONE STRUCTURE AND CONDUCTIVITY OF 3D PERCOLATION NETWORKS BY THE DIRECT ELECTRIFYING ALGORITHM

    https://doi.org/10.1142/S0129183109013777Cited by:13 (Source: Crossref)

    This paper confirms the applicability of a newly developed efficient algorithm, the direct electrifying method, for identifying backbone for 3D site and bond percolating networks. This algorithm is based on the current-carrying definition of backbone and carried out on the predetermined spanning cluster, which is assumed to be a resistor network. The scaling exponents so obtained for backbone mass, red bonds, and conductivity are in very good agreement with some existing results. The perfectly balanced bonds in 3D backbone structures are predicted first time to be 0.00179 ± 0.00009 and 0.00604 ± 0.00008 of the backbone mass for bond and site percolations, respectively.

    PACS: 05.10.-a, 05.70.Jk, 64.60.Ak
    You currently do not have access to the full text article.

    Recommend the journal to your library today!